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Introduction
The why



Green hydrogen’s role in the future energy system
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Increased electrolyser
demand
Estimated future demand for hydrogen in the EU
From Dansk Energi. Hydrogen demand in million tonnes H2 2021; 
Clean Hydrogen Monitor 2022, Hydrogen Europe; REPowerEU, EU 2022

Demand for hydrogen in Europe is expected to grow significantly
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Levelized Cost of 
Hydrogenn LCOH=

Costs
H2 production

▪ Cost contributors example*
 

- CAPEX 15-25%

- Efficiency 60-80%

- OPEX 5-15% 

* Electricity spot prices from Denmark’s electricity grid in 2023, 75% utilization



Levelized Cost of 
Hydrogenn LCOH=

Costs
H2 production

▪ Cost contributors example*
 

- CAPEX 15-25%

- Efficiency 60-80%

- OPEX 5-15% 

▪ LCOH insights give strategy to lower LCOH

▪ LCOH insights can be counter-intuitive

▪ Note: added value from increased 
pressure not included in LCOH 

* Electricity spot prices from Denmark’s electricity grid in 2023, 75% utilization



Levelized Cost of 
Hydrogen

LCOH=
Costs

H2 production
▪ Improving the picture: using several value 

streams

▪ Hydrogen

▪ Oxygen
▪ Waste heat

* Electricity spot prices from Denmark’s electricity grid in 2023, 75% utilization

LCOH=
Costs

H2 production + O2 production + waste heat
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Enclosure comprising 1x X1200 unit
(auxiliary systems incl.  Deoxo, Dryer and Dry cooler are optional)

6 MW

HyProvide    X–Series
A modular, scalable electrolysis solution in enclosure

A180, two stacks of 450kW each, in a 40 foot container 
(includes auxiliary systems)

0.9 MW

HyProvide A–Series
A modular, containerized, plug-and-play electrolysis solution

Current offering Under commisioning

• One product variant: X1200 (6 MW)
• Hydrogen production: 1,200 Nm3/hr (107 kg)
• Hydrogen gas purity: 99.998 % (with GTO)
• Cell stack: 53 kWh/kg H2
• Cell stack + Stack Power Supply (SPS): 57 kWh/kg H2
• Hydrogen outlet pressure: 35 barg.

• Two product variants: A180 (900kW)
• Hydrogen production: 180 Nm3/hr – (16 kg)
• Hydrogen gas purity: 99.998 %
• Cell stack: 53 kWh/kg 
• Cell stack + Stack Power Supply (SPS): 57 kWh/kg H2
• Hydrogen outlet pressure: 30 barg.
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Electrolysis
The how



How to choose between 
electrolyser technologies
Specific customer requirements will lead to different choices

Project size (MW) Material use Hydrogen quality

Hydrogen pressure Dynamic responseTCO / business case

Footprint

m2



Technologies



Detailed Technology Comparison

12

Schmidt 2017, Future cost and performance of water electrolysis: An expert elicitation study
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Pressurized Alkaline Electrolysis
Splits water into hydrogen and oxygen
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Hydrogen electrolysis process
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2e-
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H2O

2 OH-

H2O + ½ O2 + 2e-

2 H2O + 2e-

H2 + 2 OH-

Hydrogen electrolysis is a process

that splits water into hydrogen and

oxygen using electricity.

Hydrogen generated from 

renewable electricity sources is 

considered green hydrogen.

The process of green hydrogen 

electrolysis is completely fossil-free, 

as the only by-product is oxygen 

and the power used in electrolysis 

is generated from renewable 

sources.



Rozzi, Elena & Minuto, Francesco Demetrio & Lanzini, Andrea & Leone, Pierluigi. (2020). Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies. 
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Pressurized Alkaline Electrolysis
Splits water into hydrogen and oxygen



Brauns, Jörn & Turek, Thomas. (2020). Alkaline Water Electrolysis Powered by Renewable Energy: A Review. Processes. 8. 248. 10.3390/pr8020248. 

Pressurized Alkaline Electrolysis
Splits water into hydrogen and oxygen

• Activation losses 

(improvement possible from 

higher T and catalyst on 

anode/cathode)

• Resistive losses 

(diaphragm, circuit, bubbles, 

electrolyte etc)

• Reversible cell voltage 

(1.23 V, electrolysis of vapour 

H2O)

• Not shown: starting from liquid 

water

(U_”rev” from 1.48 V)



Pressurised (Alkaline) Electrolysis

Zero-gap design – combines numerous

electrochemical cells into a stack of cells. 

All cells are wetted with electrolyte (pH > 14), 

which is in turn saturated with hydrogen and 

oxygen. Electrolyte circulated through system.

Resulting in

▪ High area with small design

▪ Few electrical connections

▪ Higher voltage with the same current

Challenges

▪ Highly corrosive environment

▪ Conducting electrolyte will draw stray

currents

2 OH-

H2O + ½ O2 + 2e-

2 H2O + 2e-

H2 + 2 OH-

H₂½ O2

OH⁻



Electrolyser as pressure vessel

Using the electrochemical reactions

to pressurize the system

Anode (+) 2OH- -> H2O + ½ O2 + 2e-

Cathode (-) 2H2O + 2 e- -> H2 + 2 OH-

Overall reaction:  H2O -> H2 + ½ O2 

System efficiency

The overall energy demand 

for producing pressurized

hydrogen can be reduced

by utilizing the nature of 

the electrolyser.  

Reduced gas volume

▪ Dynamic behaviour:

Fast ramp rates enable

coupling to RE sources.

▪ Footprint:

Greatly reduced by in-creasing

gas density.
<53 kWh /kg H2 (Stack energy requirement)
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Instrumentation 
and operation



MinWP Process diagram



Instrument requirements

Gas system (P)AWE system

35% aq. KOH + 
dissolved O₂/H₂

Ni or F

35-50 bar(g)

H₂ or O₂
compatible

AISI 316 or 
similar

35-50 
bar(g)

Zone 2, Hydrogen, 

(P)PEM system

Water + 
dissolved O₂/H₂

Pt, Ir (316L)

35+ bar(g)
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Conclusion
The what (technology)



Recap of technologies
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Pressurised alkaline is well-
positioned across competitive 

dimensions

Technological viability has
the potential to be a key competitive 

differentiator, as CAPEX costs 
between technologies are expected 

to converge in the long-run

Long term market differentiators
could be centered around flexibility, 

reliability, efficiency (main OPEX 
driver) and footprint

Competitive dimension

Efficiency

Competitive energy to hydrogen 

conversion ✓ ✓✓

Reliability

System uptime and durability ✓ ✓✓

Key for utilisation of renewable energy sources – across potential applications and minimisation of energy lost

Flexibility

Capacity to operate dynamically at 

variable load rates
✓ ✓

Independency of scarce 

resources

Noble metals not an input in process  ✓✓

Footprint

Minimal footprint compared to other 

electrolyser technologies ✓ ✓

Independency of lye

The chemical lye is not 

contained in the electrolyser ✓ 

PEM Atmospheric alkalinePressurised alkaline

Water purity

Lower water purity required in 

process  ✓✓



Thank you
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